Stats: Critical Regions For A Sampling Distribution Hypothesis Test

How to find critical regions for a sampling distribution hypothesis test.
We may need a calculator's Inverse Normal function.

Casio fx-991EX Classwiz	Casio fx-CG 50
1) Press MENU then 7:Distribution	1) Press MENU then 1 then OPTN
2) Press 3: Inverse Normal	2) Press F5 for STAT
3) Set the Area* and the correct σ and μ	3) Press F3 for DIST and again for NORM
4) Press = and round to 3sf	4) Press F3 for InvN
* Area must be to the left of your point	5) Input Area*, SD, and mean in that order
	6) Press EXE and round to 3sf

E1: Ngoneh is conducting a sampling distribution hypothesis test using $X \sim N(40,4)$.
Find the critical region if $\mathrm{H}_{1}: \mu>40$ and the significance level is 5%.

Method If Calculator Is Allowed

Working

1) Find the area required:
0.95
2) Use a calculator as above:
$x>43.3$ to 3 sf

Method If Solutions Relying On Calculator Tech Are Not Allowed

1) Find the z-value in the Percentage Points of the Normal distribution table:

Working

1.6449
2) Use the z-equation to find an x-value and give your critical region:
$1.6449=\frac{x-40}{2}$
$3.2898=x-40$
$x>43.3$ to 3 sf

Questions

1) A sampling distribution hypothesis test is set up for $X \sim N(80,25)$.

Find the critical region if $\mathrm{H}_{1}: \mu>80$ and the significance level is 5%.
2) A sampling distribution hypothesis test is set up for $X \sim N\left(100,8^{2}\right)$.

Find the critical region if $\mathrm{H}_{1}: \mu<100$ and the significance level is 1%.
3) A sampling distribution hypothesis test is set up for $X \sim N(64,5)$.

Find the critical region if $\mathrm{H}_{1}: \mu \neq 64$ and the significance level is 5%.
4) A Normally distributed variable has mean 125 and variance 36 . A sample of 10 is taken to test that the mean has decreased. Find the critical region for a test at significance 1%.
5) A Normally distributed variable has mean 90 and variance 40 . A sample of 20 is taken to test that the mean has changed. Find the critical region for a test at significance 10%.
6) A Normally distributed variable has mean 50 and standard deviation 8 . A sample of 15 is taken to test that the mean has increased. Find the critical region for a test at significance 5%.

Answers

1) $x>88.2$
2) $x<81.4$
3) $x<59.6 \cup x>68.4$
4) $x<120.6$
5) $x<87.7 \cup x>92.3$
6) $x>53.4$
