Stats: Critical Region For Binomial Hypothesis Testing Notes NEW

If a result is in the critical region, we reject H_{0}; if not, we do not reject H_{0}.
E1: Ase buys sweets with her lunch with probability 0.27 . Over the next 20 days, she buys sweets with her lunch once. Find the critical region and test the claim that Ase now buys fewer sweets with her lunch at the 5% significance level.

Method

1) Define p :
2) Give the distribution:
3) State the hypotheses:
4) Use a calculator to find cumulative probabilities:

Working

Let p be the probability Ase buys sweets with her lunch
$X \sim B(20,0.27)$
$\mathrm{H}_{0}: \mathrm{p}=0.27$
$H_{1}: p<0.27$
See below

Casio fx-991CW Classwiz	Casio fx-CG 50
1) Press HOME and select Distribution	1) Press MENU and select 2 Statistics
2) Select Binomial CD and then List	2) Input the required values into List 2*
3) Input the required values into the x column*	3) Input 0's in List 1 to match the values in List 2
4) Press EXE with any x value highlighted	4) Press F5 for DIST and F5 again for Binomial
5) Input the appropriate N and p values	5) Press F2 for Bcd and F1 for List
6) Select © Execute and press EXE	6) Select L.List, press F1, type 1, press EXE
7) The probabilities we need are in the p column	7) Select U.List, press F1, type 2, press EXE
	8) Input the appropriate Numtrial and p values
	9) Select Save Res, press F2, type 3, press EXE
	10) Press EXE again and then press EXIT twice
	11) The probabilities we need are in List 3

*To find the required numbers, find the mean (np). Then:

- If H_{1} is $p<k$, we want all the whole numbers from 0 up to the mean
- If H_{1} is $p>k$, we want all the whole numbers from the mean up to n
- If H_{1} is $p \neq k$, we may want all the whole numbers from 0 to n

The table shows how to find $P(X \leq x)$ for all the x-values in the x column (Classwiz) or List 2 (CG 50).
5a) Give the highest probability below the significance level:
$P(X \leq 1)=0.0155$
5b) Write 'BUT':
BUT
5c) Give the first probability above the significance level:
6) Give the critical region [5a without P and brackets]:
$P(X \leq 2)=0.0635$
7) Test the result in the question:
$X \leq 1$
8) If true, reject H_{0}; if not, do not reject H_{0} :
9) Give the conclusion in context:
$1 \leq 1$ - it's true
Reject H_{0}
There is some evidence to suggest that the probability Ase buys sweets with her lunch has reduced

Stats: Critical Region For Binomial Hypothesis Testing Notes NEW

E2: Mike gets Maths questions right with probability 0.81 . He revises thoroughly before the next Maths test and gets 15 of the 16 questions right. Mike claims he has increased his probability of answering Maths questions correctly. By finding the critical region, test his claim at the 10% significance level.

Method

1) Define p :
2) Give the distribution:
3) State the hypotheses:
4) Use a calculator to find cumulative probabilities:

5a) Give the highest probability below the significance level:

5b) Write 'BUT':

5c) Give the first probability above the significance level:
6) Give the critical region:
7) Test the result in the question:
8) If true, reject H_{0}; if not, do not reject H_{0} :
9) Give the conclusion in context:

Working

Let p be the probability that Mike gets a Maths question correct
$X \sim B(16,0.81)$
$\mathrm{H}_{0}: \mathrm{p}=0.81$
$\mathrm{H}_{1}: \mathrm{p}>0.81$
$16 \times 0.81=12.96 ;$ need 13 up to 16
$1-P(X \leq 15)=0.0344$
So $P(X \geq 14)=0.0344$
BUT
$1-P(X \leq 14)=0.163$
So $P(X \geq 15)=0.163$
$x \geq 14$
$15 \geq 14$ - it's true!

Reject H_{0}
There is some evidence to suggest that the probability that Mike gets Maths questions correct has increased

Notes For The Above Question

- If H_{1} is $p>k$, the critical region takes the form $X \geq x$. As the Classwiz gives us $P(X \leq x)$ only, we must subtract results from 1 to get the required probabilities
- CG 50 owners can change List 1 to the values indicated in Step 4, and List 2 to all n values (16 , here) to match the values in List 1 . This finds the required probabilities without needing to subtract from 1

General Critical Region Notes

- The set of values that mean we do not reject H_{0} is called the acceptance region
- We can give critical regions as sets of numbers. E1's is $\{0,1\}$; $E 2$'s is $\{14,15,16\}$
- A two-tailed test (where H_{1} is $\mathrm{p} \neq \mathrm{k}$) has small and large values in it: check both sides of the mean

